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I. INTRODUCTION

For three decades interest in simulation modeling and simulation languages has
been expanding, almost keeping pace with the phenomenal rate of growth of computer
technology. Lagging somewhat behind has been the concern for the validation of the
resulting simulation models; that is, the establishment of some level of confidence that

the model does, in fact, accurately mimic some real-world process. In the last fifteen
years, research in validation techniques has been substantially increased; and a
consensus of general conclusions has formed:

1. validation is problem dependent - there is no one general validation
technique, mainly because the output from a model may be independent or
correlated, univariate or multivariate, stationary or dynamic, and so forth; V
in fact, the model itself may be deterministic or stochastic,

2. in general, absolute validity is nonexistent - once a particular technique has Z
been established, the model is usually validated only for a specific purpose
and over a specific range of values,

3. empirical data are necessary - in order to validate a model, some comparison
of output data with real-world data must be made; furthermore, these
empirical data must be independent of those used in construction of the
model, and

4. statistical tests are desirable - of the many methods proposed for validating
simulation models, the use of statistical tests seems to be preferred, possibly
because of the ability to establish some level of confidence.

Because computer simulation models are prevalent at the Ballistic Research
Laboratory, the Experimental Design and Analysis Branch of the Systems Engineering
and Concepts Analysis Division was funded to perform research in the area of the
validation of such models. Results from the research are summarized in this report.
They include a thorough literature review in which we examined existing validation
techniques along with additional related information. Eventually we developed two
nonparametric procedures, demonstrating them on a simulation model currently used by
the Vulnerability/Lethality Division.

Nonparametric validation methods generally involve a procedure known as
hypothesis testing. The initial step is to state a null hypothesis, usually "the simulation
model is valid." Then a level of confidence is established, often 95%; and a particular
test statistic is chosen. Two different errors are present in hypothesis testing. The first
is called a Type I error and occurs when a true null hypothesis is rejected. If the level
of confidence has been set at 95%, then it follows that the probability of a Type I error
is 5%. However, in simulation model validation a Type H error is the more important
to control; this occurs when a false null hypothesis is accepted. No level of confidence is
pre-established to guard against accepting an invalid model; but, for any particular
statistical test, a measure of the protection against this error is given by the power of
the test, equal to the probability of rejecting the null hypothesis when it is false.

9
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Unfortunately, there is a tradeoff between the two error types; as the level of
confidence is increased (lower probability of a Type I error), the power of the ttt is
decreased (higher probability of a Type II error). This implies that one way to increase
the power of a test is to decrease the level of confidence in it. There are, however, more
satisfactory ways; and they will be mentioned in the summary of this report. Tile
important point to remember is that when attempting to validate a simulation model
using hypothesis testing, it is imperative that the statistical test be a powerful one.

11. LITERATURE REVIEW

As the electronic computer became a more powerful tool, computer simulation
became a more viable method by which the behavior of a given process could be
characterized. As early as the 1950's, articles were being published about computer
modeling of entire systems; and soon after, specialized simulation languages were
developed. The pioneers in this field realized the need for some assurance that tile
simulation output would be consistent with the empirical data that were available.
However, prior to 1067 there was very little written that provided any explicit
procedures which might be applied to determine the soundness of a computer model. In
that year several papers concerning this problem were published, and two of them"
became a foundation upon which most subsequent efforts have been constructed.

In 1967, Fishman and Kiviatl provided definitions which differentiated the notions
of verification and validation, terms which had previously been used interchangeably.
"Verification determines whether a model with a particular mathematical structure and
data base actually behaves as an experimenter assumes it does. Validation tests
whether a simulation model reasonably approximates a real system. Most individuals
working in this area today have subscribed to these definitions, although papers
continue to be published which do not discriminate between the two ideas. Figure 1,
taken from a paper by Winter, et. al.2, is a Venn diagram illustrating the relationship
between verification, validation, and other concepts within the field of computer
simulation. Stone3 believed the word assessment "... is preferable to validation which
has a ring of excessive confidence about it." However, in this paper we will continue to
consider validation as defined by Van Horn,4 who expanded on the previous definition
by giving it a somewhat statistical flavor. "Validation ... is the process of building an
acceptable level of confidence that an inference about a simulated process is a correct or
valid inference for the actual process."

Fishmas. GS. and Kmat. P.J.. 'Digital Comprter Simatison Stati tical Cowiiderattons. Memorandum R.-387.PPM. T,

Rand Corporation. 1967.

2 Winter. E M. Wisemiler. D P. azd UjiharmJ K. Venrgcation ad Validatiot of Engineering Simulatiots with Minimal D2ta."

Pmeedinr' of the 1976 Summer Comouter Sitmuitiii Conference 1976.

Stone. M. Cro-s-Vahdati-g Choice azd Ameunrt of Statistical
Prediction.' Journal of the Roy-J Statinical Seciet. steries [C-36. 1874-

4 Va Horn. R . 'Validation.' The Dertrn of Comrt-er SimOzntion Fxrerimet. Duke Univemsty Prem.. 19V,

-.
-
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FLGURE k~ RELATIONSHIPS B~rWEEN THE VARIOUS CONCEPT OF A COMPU7FE SDMICM

The second influential paper to appear in 19687 was by Naylor and Figer.5 In it
they proposed a three-stage approach -to validation of a computer simulation. This
techlnique, or a modified version of it, has been used by numerous authors. Law%6 has
augmented their approach with specific suggestions for each of the three stage's:

1. develop high face-validity - insure that the simulation seems reasonable to
those people who are knowledgeable in the area,

2. test the simulation assumptions - examine the data used in building the
simulation and empirically test the assumptions drawn from those data, and

3. compare simulation output data with empirical data - use tests. statistical is"
possible, to determine a level of confidence in the simulation.

When attempting to validate existing models, the first two stages will often ha-le
already been completed by the developer of the simulation leaving only the third stage.
potentially the most difficult.

Naylor, TF H an~d Finger. J M. WtfifiCAtIOD Of COMPntC.- SIMU11t.Vt Modeb.' Minalenent scirrt~ Vol 14 No 2- 196.

Law. A M, Simulttion Mod-hUn and Antalv.,t University of Wtsonsit. 18789



Not everyone subscribes to the three-stage approach to validation. Hoiwever, there
does seemr to be a general agreement that the third stage, comparing simulation output
data with empirical data, is crucial. Sometimes obtaining empirical data in the regimin
of applicability is very difficult, especially in engineering simulations. Winter, et. al. 2

mention in tht case, The quality of the component models and the excellent
knowledgre of the random process along with a systematic verification must be a
substitute for validation." However, Fishman and Kiviatl are firm in their statement
that " .if no numerical data exist for an actual system, it is not possible to establish
the quantitative congruence of a model with reality." In attempting to perform this
third stage, WVright 7 sugg,,ests that three question~s be considered:

1. how do we intelligently compare simulation output data with empirical data.

2. how do we collect and exploit the empirical data used in our tests, and

3. how do we transform the results of these tests into a confidence in the
computer simulation?

Finally, Baird, et. al.8 warn that the empirical data used for comparison with the
simulation output data must be independent of those used in building the computer
model; otherwise. we have only verification of the simulation.

Tytulao has divided the many methods used for the data comparison into five
general categories:

L. judgemental comparison - this method seems to be the most widely used and.77
includes graphical anialysis and the comparison of common properties such -5
the mean and variance; it is easy to use and quite practical, but the impadt
of errors in judgement is difficult to assess,

2. hypothesis testing -this method includes goodness-of-fit tests. anfalysis-Of-
variance techniques. and nonparametric ranking methods; since this will be
the category of interest in our report, the advantages and disadv. ntages- wIl
be discussed in the succeedingr section.

=3. spectra! analysis - since the output of many simulation modvh, is in the for.-I 4
of a time series, this method is particularly useful; however. it is difficult to
relate the invalidity at a particular frequency to the overall sitnulat ion

validit v.

Wrtiat. R D. -Va~ide-itt N. namic Modeb Am Ev~uxom of Teits ci Predictive Power.*
Proed&-- of the 19 72 SUM- ('Amtmt-r s-iit11m Cm~'r--Me- I972

8 Bard. A M. Goda.R B. Cryat. W C. Halt. WV C. aird Be~we. F M. *Ve~fcation m~d Vahizdtion or R:--vnr..c=e-!-

Model, - Methodaiouz Overe*.* Soeizg Aevospace Compary, 1910

Tytuia. T P. 'A Mtod for Vazdatirg Mnsle Sy~tem Simiatazon Mfodr.* Techtical Report E-78-1 1. U S Arvmy".
Reiearch an-d Developmerti Commnazd. 19M
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4. sensitivity analysis - this method can determine a range of parameter values
and assumptions over which the simulation is valid, but it is usually difficult
to analyze the effects of the characteristics drifting outside this range, and

5. indices of performance - this method is useful in ranking models; however, it
is impossible to pick a value for a given index which will always imply a
valid simulation.

Validation is a difficult process because, as Tytulao points out, no single
satisfactory method exists. Most techniques are problem" dependent; and, indeed, the
output data of a simulation may be independent or correlated. univariate or
multivariate, stationary or dynamic. In fact, Garrett 0 states that. "The critical
dimension affecting the applicability of various techniques is that of the deterministic or
stochastic nature of the output." Only a few authors have attempted to provide a
general validation technique - see Gilmour" for an example. Most have developed
methods which apply to a select subset of simulation models; and, even then. the

:- -simulation is often validated only for a particular purpose or over a particular range of
values. In the" case, care must be taken not to apply the simulation model outside the
validated regio,

II. VLIDATION PROCEDURES

In this report we will be examining hypothesis testing as a method for validating
both deterministic and stochastic computer simulation models. This type of procedure
allows some level of confidence to be attached to the results. When employing
hypothesis testing, several assumptions must usually be stated; but by using
nonparametric ranking techniques we will eliminate one major (and often unjustifiable)
assumption - that the data arise from a normal distribution.

Sargent' 2 notes that for hypothesis testing we generally assume a null hypothesis
*:' that the simulation model is valid. Then by establishing a level of confidence for a -

particular statistical test, we fix the probability of a Type I error in which we reject a
valid model. However, for simulation validation it is more important to minimize the
probability of a Type II error, that is, accepting an invalid model. The magnitude of
the Type H error can be determined by the power function of the statistical test where
the power is the probability of rejecting a false null hypothesis. For a fixed sample size
there is a tradeoff between the two error types, so that we can increase the power at ;he
expense of the confidence level. Unfortunately, the power can not be computed against

10 Garrett. M. 'Staistical Validation of Simulation Model,.' Proeeedicr- of the 1974 Summer Compicip Sulps|r'o Co f e_

1974

Gilmour. P. 'A General Vai:dation Procedure for Computer Simulamon Models. e A&utrailin CoMvater | VJo 5t- -V-l

No 3. 173
12

Sargent. R G. *Developirg Stabst:cal iad Co*.-Rt3k Proceduret for Validation of Simulatiou Modeb. US Army Rvearctb

Office Proposal Number 1I21-M. 1M0
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an alternative hypothesis as general as, "The simulation model is invalid': and

therefore, it must be examined against an array of different specific alternative
hypotheses. Nevertheless, we continue to search for powerful statistical tests with
justifiable assumptions which will still provide acceptable levels of confidence.

Let X = (x1, x2, .... x) be a vector of inputs to a simulaion model, and let v be an
output resulting from X. Then y may take on a single value, as in a determiistic
model, or many values, as is the case with a stochastic model. Let z be the
corresponding value from the real-world process given the same input vector- In
general, y will not be equal to z since X contains only a finite number of input variables;
ostensively, the most relevant ones. The purpose of the simulation model is to mimic the
real-world process. Thus, in attempting to validate it, we compare each empirical value
with the corresponding model output generated under the same conditions; that is, the
same values for the vector X.

Suppose there exist N pairs of data (y1, z1), (Y2, z2), . . ., (YN, ZN) available for
comparison, where each pair corresponds to a different input vector and where cach yi
may itself be a vector of values in the case of a stochastic model. Reynolds and
Deatont 3 note that because each of the pairs was generated under different conditions, it
would be incorrect to pool the data and proceed with the testing of our hypothesis.
Rather, we must find a statistical procedure which examines each pair individually and
then allows for the combination of these results into one overall test that provides
reasonable power. With this as our goal, we propose to use two nonparametric
statistical procedures - the Wilcoxon signed-ranks test in the case of a deterministic V
model and. for a stochastic model, a process which combines independent cases of the 1

Mann-Whitney test.

Deterministic Model

A deterministic model provides c-ne and only one set of output values for each set __

of input values. Such a model is frequently used as a first attempt at representing a
stochastic system. and quite often it t-ill adequately simulate at least the coarse
behavior of such a system." The deterministic model generally has the advantages of
being both simple and inexpensive. Any individual output value y from tht. model can
be compared with an empirical value z obtained from the actual system under the same
set of input values. Considering N different input sets, the available data consist of N
observations (y, z1), (y_. z1,..., (yN, ZN) of bivariate random variables. The Wilcoxon
signed-ranks test is applicable. The null hypothesis of this test can be loosely stated as.
"The values of the y's tend to be the same as the values of the zi's," which we can
interpret as, "The simulation model is valid."

'-.
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C --- moz_ Srza1n. S_-5-' h Ctmrom.M Valli NOS. 1W.[ 2



The Wilcoxon signed-ranks tests is a hypothesis test for identical medians that uses 1-W
paired observations. To use it, we first compute Di  yi - zi for i 1, 2, N, ,

recalling that each of these random variables may be from a different distribution. Tle
following four assumptions are made concerning these Di's:

1. the distribution of each Di is symmetric, 17

2. the Di's are mutually independent, V.

3. the Di's all have the same median, call it m.50, and

4. the measurement scale of the Di's is at least interval.

The fourth assumption means that for any two observations on the random
variable we can distinguish not only which is larger and which is smaller, but also which
is farther from the common median.

The null hypothesis is that m.50 = 0; in other words, that all the Di's have medians
equal to zero. This would indicate that the - of the yi's and the zi's tend to be the
same. A rank Ri, based on the absolute vaiue of each Di, is assigned; thus, the 1Ri's
consist of the integers 1 to N. Ri is then adjusted to zero for each Di < 0. The non-
zero integers that remain are the ranks of the positive Di's; and a test statistic T is

defined to be their sum; that is, T - Ri. Very high and ve- " low values of T cause

rejection of the null hypothesis. The theory behind the test is explained very clearly by
Conover, where tables containing various quantiles of the Wilcoxon signed-ranks test
statistic are available.

One further assumption is sometimes made, that each Di is a contiruous random
variable. Theoretically, this assures that there will be no Di = 0 and no Di - Di where
i/j. However, in practice the available data Ma produce zeros and ties; and method,-
have been devised for handling these situations. Although it is often recommended that
the zeros be dropped from the data immediately, they are sometimes very important,
especially when attempting to show that there is no significant difference between the
values of the yi's and zi's. Lehmann' 5 proposes ranking the absolute values of all the
Di's including the zeros and, in the case of ties, assigning each of the tied values the
average of the ranks normally due them. Then the Ri's are adjusted by multiplying -

them by -1 if Di < 0, 0 if Di = 0, or I if Di > 0. The test statistic T, then becomes
the sum of the positive Ri's, and a second test statistic T2 is defined as the sum of the
absolute value- of the negative Ri's. Rejection of the null hypothesis is caused by very
high values of either T, or T2 .

14 Conover, W J., Practical Non),ratnetn, Statittic. John Wiley & sons, Inc. 1971.

16 Lehmann, EL, N2A zamo1'. Stictiii l Methd, Ba ed on Rank. llolden-Day, Inc, 10765
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As mentioned earlier, a misuse of hypothesis testing as a method of simulation
validation occurs when too little concern is shown for the power of the test. The power
is the probability of rejecting an invalid model, and we would like this probability to be
as close to one as possible. Unfortunately, the power can be calculated only for specific
alternative hypotheses. In order to generate power curves for the Wilcoxon signed-ranks -
test, it is convenient to make the additional assumption that all Di's come from a.
common distributic-n. Although this may not always be valid, it does afford us an
indication of the power of the test against an alternative consisting of a shirt in the
mean, which fo" a symmetric distribution is identical to. the median. Figure 2 shows
some power curves for this test against a shift in the mean when the underlying
distribution of the Di's is normal with a mean equal to p and a variance equal to one.
Recall that a true null hypothesis would indicate that the values of the yi's and the z,'s--
tend to be equal. These curves were generated using a Monte-Carlo procedure %hich
incorporated 10,000 replications. Note the increase in power as the number of
observations increases. Figures 3-5 display some power curves for other alternative
hypotheses, each figure assuming a different common distribution for the D,'s with a
corresponding modification of one of the parameters of the distribution. Notice when
the abscissa is equal to zero (when the null hypothesis is true), the probability of
rejection is 0.05 - the value chosen for the probability of a Type I error. The faster the
curve approaches one, the more powerful the test against that particular alternative
hypothesis. Although very narrow in their scope, these results do provide us with an
indication of the overall power of the test against a shift in location and allow us to
determine the extent to which the probability of a Type II error might be reduced by an
increase in sample size.

Stochastic Model

A stochastic model provides a set of output values that, for each given set of input .W-
values, occurs with a certain probability. Mihram states that 'his "... probability ...
serves as a measure of our human ignorance of the actual situation and its
implications." Generally, the behavior of the system is too complicated to include all of
the appropriate inputs in the computer model. Even if it were possible, the return in
accuracy provided by such thoroughness may be small. Refinement of a computer
model usually leads to stochastic modeling; and because of the abilities of today's
computers, the use of such modeling has substantially increased.

Given M replications, output of the model becomes a set of values yt 2,1 .... Vy for
each set of input values which can be compared with (in our case) a single corresponding
empirical value z. Recall that X is a vector of most, but not all, of the relevant input
variables. Then z, given the value of X, is a random variable reflecting the random..
error due to the exclusion of certain factors from X. Also y, of course, is a random
variable since the simulation model is stochastic. We would like to show that F(y I X),
the conditional distribution function of y, is equal to G(z[X), the conditional
distribution function of z for all - 00 < y, z < 00 and for all X.

1Mibram. G A, Simulation S.atial Foundation, and Methodolory , Academic Prtse, Inc, 172"
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Considering N different input sets, the available data consist of N observations
(y , ), , 2(, , ZN)h
1 , Yi , 1 ), (Y2" Y2 " ... I 

*.. 
, ZN) of m ultivariatek, N -N , "

random variables, where the yk's for any given observation share a common distribution.N Mihram' 6 suggests ranking yi', Yi2  , zi for each i: if the model is valid, we would
expect the zi to fall somewhere in the middle of such a ranking. This is the initial step
in a procedure known as the Mann-Whitney test, a particular case in which one of the
random variables, namely zi, has a sample size of one. Since we are dealing with N
observations, we need a method by which we can combine independent cases of the
Mann-Whitney test; such a method has been proposed by. Van Elteren17 and referenced
-a a very clear example by Reynolds, et.al.,18 .

The Mann-Whitney test is a hypothesis test involving samples from two
distributions that tests for equality of the distributions. For each input set X a sample =

of M output sets y, y2,-.., yM is obtained from the computer simulation, and the
empirical observation z provides another sample of size one. The following three
assumptions are made:

1) both samples are random samples from their respective populations,

2) in addition to independence within each sample, there is mutual
independence between the two samples, and

3) the measuroment scale is at least ordinal.

The third assumption means that for any two observations on the random variable we
can distinguish which is larger and which is smaller.

The null hypothesis is that F(y X) G(z X) for a given input set X. When we
combine N of these tests, in the manner suggested by Van Elteren, we have the null
hypothesis of F(y I X) - G(z I X) for all -co < y, z < oo and for all X, which we can
interpret as, "The simulation model is valid." Let Ri be the rank of zi in the ith

observation (yi1, y;2, ... , y z); thus, Ri is an integer betweep 1 and M + 1. Then a
test statistic T is defined as the sum of the Ri's over a.: N observations; that is.

T = Ri. Very high or very low values of T will cause rejection of the null hvpothwsi;.

The theory behind the Mann-Whitney test is given in Conover 4 , and the comb;nation.
of such tests is explained by Van Elteren.

A fourth assumption is usually made, that both samples consist of random w
variables from continuous distributions. As in the case of the Wilcoxon test statistic,
this is to assure that there will be no zeros and, more importantly, no ties. However, for

17 Vat ElterenP,, 'On the Combination of Independent Two Sample Tests of Wilcoxon.,

Bulletin de l'intitute International de Stati ti2ue. 37, 1060

Reynolds, M R , Burkhart. H E, and Daniels, R F., 'Procedures for Statistical Validation of Stochstic Simulation Modek,-

Foreut Science. Vol 27 No 2. 19B1.
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this test, a moderate number of ties is tolerable; and they are handled as previously by
assigning each of the tied values the average of the ranks normally ,-ae them.

The power of this test against alternative hypotheses analogous to those sho" n for
the Wilcoxon test is displayed in Figures 6-9 which were generated using a Monte-Carlo
procedure which incorporated 2,000 replications. Once again, in generating these power
curves, we have made one additional, albeit restrictive, assumption; namely, the
distribution of the yi's is the same for each vector of input values, and similarly for the
distribution of the zi's. Although it would be preferable to avoid this assumption, it is
necessary in order to test against specific alternative hypotheses - in this case, a shift in
the mean; and, as with the WilCoXoL test, these curves do provide an indication of the
overall power of this combination of Mann-Whitney tests against the shift in location.
This test appears slightly less powerful than the Wilcoxon signed-ranks test. This is a
result of the assumption of the less stringent ordinal measurement scale. If M = 1, the
combined Mann-Whitney test reduces to the sign test, a nonparametric procedure

similar to the Wilcoxon test but making no assumption of symmetry of the distributions ..
and consequently requiring only an ordinal measurement scale, resulting in a less
powerful test. Reynolds and Deaton13 look at some test statistics similar to T designed
to be more powerful against other alternative hypotheses.

IV. EXAMPLE

The Vulnerability Analysis for Surface Targets (VAST) model is a computer
simulation currently in use at the Ballistic Research Laboratory to evaluate the effect of
kinetic energy projectiles or shaped-charge threats against a single surface target.' 9 It.
incorporates damage from both the primary penetrator and any associated spall
fragments; but currently it is unable to handle damage resulting from blast, heat, and
certain synergistic effects such as ricochets. Furthermore, there is a variety of opinions,
estimates, and decisions, all based on the experience of the vulnerability analysts but
generally providing vague and imprecise data, which subsequently serve as input to the
simulation. Nevertheless, results demonstrate reasonable face validity, so an attempt at

- statistical validation of the model seems feasible.

A target description is produced by a separate computer code using a combination A
of geometric figures and, once generated, can be viewed from any orientation. After a
viewing angle has been established, a rectangular grid is superimposed over the target in
the plane orthogonal to that angle. From a (uniform) randomly-selected point within

_ each grid cell, a ray is traced through the target; and a list is constructed of all
components encountered. If a spall-producing component is encountered, spall rays are
traced from that point of impact to all critical components in the target. These ras -
represent spall fragments whose size, shape, and velocity are chosen at random from
specified distributions.

Hafer, T F ad Hafer. A S, Vulnerability Analys1s for Surface Target! (VAST) An lnt -ral Point-Bnrst Vulerablhtv .kndel.-

ARBRL-TR-02154, U S Army Balhtic Research Laboratory. 1079.
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Along ech individual ray, residual masses and velocities of the primary penetrator
and associated spall fragments are used to calculate the probability of incapacitation for
each critical component. These are then combined over all critical components and
provide a loss of function (LOF) for the particular cell, further combined over all cells to
provide a LOF for the particular orientation, and finally combined over several
orientations to provide an overall LOF for the target. Although its input is stochastic
in nature, the VAST model is generally run with just one replication because the results
are fairly consistent from replication to replication and b-cause the model requires
considerable time and, hence, expense to execute.

Data were provided by vulnerability assessors who had estimated loss of function -
for a particular surface target based on their inspection of actual damage from a
particular round of ammunition - in this case, the function evaluated was the mobility
function. When attempting to compare model output with this empirical data, it was
first necessary to determine the exact point of impacZ, on the surface target during the
live-fire exercise. Then the VAST model assumed that point of impact to be the origin
of the ray representing the primary penetrator. Damage due to that ray and its
associated spall rays were then combined to provide a loss of function value which could
be compared with the empirical datum point. Therefore, only one orientation was
considered and, for that particular orientation, a ray originating at a specific point
within only one cell was examined. Encountering a spall-producing component still
required a random selection of spall characteristics; and because execution time was
reduced, the model was run using thirty replications - the output data appear in Table
1. The averaged results were compared with the empirical data, in the manner
proposed for deterministic simulations; individual outputs from the thirty two
replications were also compared with the empirical data, this time using the method .Z
proposed for stochastic simulations. Thus, these data provided examples for both of our
proposed validation procedures.

Results of the test for the deterministic form of the model appear in Table 2.
Under the null hypothesis of a valid model, the sum of the positive ranks should equal
the sum of the absolute values of the negative ranks; that is, T, = T2. Lehmann 5 "

shows how to establish critical values against which the test statistic can be evaluated.
He derives the expectation of the test statistic,

E IT]- IN (N + 1) - do (do + 1)], (1)
4

and the variance of the test statistic, -

Var [T] = 4I [N (N + 1) (2N + 1) - do (do + 1) (2do + 1)]

- I di (di - 1) (di + I)], (2)

where T is either the sum of the positive ranks or the sum of the absolute value of th,
negative ranks, N is the number of observations, do is the number of zero differences.
and di represents the number of tied differences for the ith tie with n different ties.
Appealing to the central-limit theorem, T= (T - E [T])/vV"F[TJ tends to the

23
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TABLE 2. DETERMiNISTIC MODEL _ _ _

Average Signed Ranks
Shot Number Empirical Value Model Value Difference of Difference

43 .734 .71 .015 11
44 .145 .700 -.555 -20
45 1.000 1.000 0.000 0
46 1.000 1.000 0.000 0
47 .100 .116 -.016 -12

48 .00 .776 .124 22
49 .93m .655 .275 25
50 1.000 1.000 0.000 0
51 .145 .881 -.736 -31
52 1.000 .0867 .033 16

53 .668 .503 .165 23
54 1.000 1.000 0.000 0
55 1.000 .890 .110 21
56 .005 .286 .610 30
57 .550 .523 .027 14.5
58 1.000 .086 .014 10
59 1.000 .457 .543 28
60 .050 1.000 -.950 -32
02 1.000 .073 .027 14.5
6- LV .207 -. 107 -20

65 1.000 1.000 0.000 0
66 .668 .735 -.067 -1."

67 .053 .970 -.017 -13
68 1.000 .738 .22 24
69 1.000 i.000 0.000 0
70 1.060 .948 .051 18
71 1.000 .513 .487 27
72 1.000 .958 .042 17
73 1.000 1.00 0.000 0
74 .905 .608 .297 26
75 .668 .670 -.011 -0
76 1.000 1.000 0.000 0

F, Positive Ranks =327

! Negative Ranks =165

Critical T-Values (a = 0.05) - 142 (lower), 350 (upper) -

Critical T-Values (a - 0.10) - 158 (lower), 334 (upper)

- zs:_
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EXN

standard normal distribution as the number of non-zero differences tends to infinity.
For our example we have 32 observations, eight zero differences, and one tie with two
tied differences; therefore, E ITI = 246 and Var [T] = 2809. We can calculate critical
values by evaluating the equation T - 53i + 246, where i is the a/2 percentile of the
standard normal distribution. As shown at the bottom of Table 2, even at an a-level of
0.10 there is no basis for rejecting the null hypothesis.

Table 3 contains the results for the stochastic model. Recall that Ri is the rank of
zi in the ith observation (yil, y-2, ..., yX, zi), and T is defined as the sum of the Ri's.
Under the null hypothesis of a valid model, zi has the same distribution as
yi, yi, ... , yM; and therefore, Ri is uniformly distributed over the values
1, 2, M + 1. Modifying the results of Lehmann'- by incorporating the number of
observations, we can calculate the expectation of the test statistic,

E IT IN (M + 2)11, (3)
2

and the variance of the test statistic,
ni

VarI -IN M (M + 2)] - (di3 -d..)], (4)
Vat IT] 12 12 M-+1 i-jinI U

where N is the number of observations, M is the number of replications of the model,
and dii represents the number of tied values for the jth tie in the ith observation with ni
different ties in the ith observation. Then T= (T - E IT])/V%'/V- IT] will have
approximately a standard normal distribution. For our example we have 32 -

observations, 30 replications, and 51 instances of tied values with varying numbers of
ties; in this case E IT] = 512 and Var 1TI- 1521. We can again calculate critical
values, this time by evaluating the equation T =39i + 512, where i is the a/2
percentile of the standard normal distribution. As shown at the bottom of Table 3, there
is insufficient evidence to reject the null hypothesis at an a-level of 0.05; however, at an
a-level of 0.10, the null hypothesis would be rejected.

Since in neither case could the null hypothesis be rejected at an a-level of 0.05, we
must be concerned with the possibility of a Type 11 error; that is, accepting an invalid
model. Figures 2-9 demonstrate the power of these tests against an alternative
consisting of a shift in the mean. Consider the deterministic case. Referring to Figure
3, we see that if F (the distribution of the differences between the model output and the
empirical data) is uniform, then the power of this test is very good since the probability
of rejection rises quickly as the parameter increases in value. Conversely, Figure 4
demonstrates that if F is Cauchy, then the power of the test is rather poor. Results for
the stochastic case are analogous. Figure 7 shows that the power of this test is very
good if F (the distribution of the model output) and G (the distribution of the empirical
data) are both uniform. However, as seen in Figure 8, if F and G are both Cauchy, then
the power of the test is again rather poor.

Reynolds and Deaton13 have proposed other test statistics more powerful against
different alternatives; but for the loss of function data where empirical results that are _
close to the value one tend to be assigned that value, a shift in the mean seems to be an

27
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TABLE 3. STOCHASTIC MODEL
r Rank within

Shot Number Empirical Value Model Values N

49 .734 31

-' + i44 .145 ll1

45 1.000 16
46 1.000 16
47 .I00 8
48 .000 27
49 1.00 31

62 1.000 16

54 .100 13.5

&6 .6N8 27

56 1.000 31
57 .550 11
58 . .000 22.5

59 1.000 25
60 .050 I1"

62 1.000 16.5
64 .100 13.5
65 1.000 30

67 .zs3 .+5 ....
68 1.000 31 (
69 1.000 16
70 1.000 24 i
71 1.000 24.5
72 1.000 30 , +
73 1.000 16
74 .905 30 ,
75 .668 15
76 LOW0 16 -

Critical T-Values (a ""0.05) -- 435 (lower), 589 (upper) --

Critical T-Values (a = 0.10) - 447 (lower), 577 (upper)
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appropriate alternative hypothesis. Since the power against this particular alternative is
fairly good overall, our confidence in the hypothesis tests tends to increase. However,
we would like to be able to make these tests and other tests still more powerful and, in
the future, will be exploring methods to accomplish this.

V. SUMMARY

When referring to computer simulation models, a few authors continue to use the
words verification and validation interchangeably; however, most distinguish between
the two terms. Verification of a computer model assures that the simulation is behaving
as the modeler intends, while validation assures that the simulation is behaving as the
real world does. Verification is the process of debugging a computer program; validation
is making it consistent with reality. K

Prior to 1067 very little was written concerning the validation of simulations; but
much has appeared since then, and there has been general agreement on several points -

the most important being that to validate a computer simulation model, empirical
observations are necessary and statistical tests are desirable. All validation techniques
can be placed into one of five categories: judgemental comparisons, hypothesis testing, r
spectral analysis, sensitivity analysis, and indices of performance.

Nonparametric ranking techniques are one class of statistical hypothesis tests. We
have advocated the Wilcoxon signed-ranks test as a validation procedure for
deterministic simulation models and a combination of independent Mann-Whitney tests
as a validation procedure for stochastic simulation models. They are statistical tests
which assess empirical data to provide a certain level of confidence in the computer
model. The main disadvantage of both is the same as that of all hypnthesis testing
techniques; namely, their concern for protecting against Type I errors, sometimes at the
expense of Type II errors. A Type I error results in rejecting a valid simulation model -
unfortunate, but not as potentially dangerous as accepting an invalid simulation model,
which is known as a Type II error. For any particular test we can get an indication of
the probability of a Type II error by generating a series of curves that will allow us to
examine the power of the test against various alternatives.

Power is defined as the probability of rejecting a false null hypothesis, and we
would like this value to be as close to one as possible. For our advocated tests we have
evaluated the power for some specific alternative hypotheses by incorporating a Monte-
Carlo procedure into a computer program, which allowed us to perform thousands of
replications. Each replication represents a case in which the alternative hypothesis was
true, and we determined whether or not the test rejected the null hypothesis.
Obviously, we can not compute power against an alternative hypothesis as general as,
"The simulation model is invalid." However, in being more specific we are forced to
examine an array of different alternative hypotheses; and while a test may be powerful
against a subset of these alternatives (such as a shift in the mean of a distribution), it
might be less so against others. The most we can hope for is reasonable power against
alternatives important to a particular investigation. Both the Wilcoxon signed-ranks
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test and the combination of independent Mann-Whitney tests appear to have reasonable
power against a shift in the mean, but we would like to be able to increase it. ['

For any given alternative hypothesis there are several ways of increasing the power.
One such way can be seen in Figures 2-9 - increasing the number of observations.
Another way is to reduce the level of confidence in the test itself; that is, allow the
probability of a Type I error to increase. In the future we will be investigating other
methods for increasing the power of statistical hypothesis tests in general and of the two
we have advocated in particular. These methods will include a statistical procedure
known as bootstrapping, a mathematical theory known as fuzzy sets, and, possibly, a
combination of the two. Because of the importance in this area of computer simulation
validation, we hope to develop ways to make these tests more powerful against a wide
range of alternatives while still permitting them to provide acceptable levels of
confidence in their results.

::-:
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